Custom Lookup Dialog for Microsoft Dynamics CRM 3.0, Version
1.3.0

Are you tired of seeing all records of a specific entity in a lookup dialog, instead of only getting a list
with associated items? The Custom Lookup Dialog for Microsoft Dynamics CRM 3.0 finds a remedy to
this common issue. It looks exactly like the standard lookup window, so your users won't even notice
that you're using a custom tool - beside the fact that it contains less data that really helps them to find
the information they were looking for.

The solution is considered an unsupported fix, meaning that it does not break any license agreement
or terms of use. It does however require you to modify two script files at the server to include the
extended functionality in your server environment.

The Custom Lookup Dialog is fully customizable. Each lookup you define specifies the query used to
find the matching records as well as its graphical representation: the columns to display, header,
footer and descriptions, enabling you to use any language you need. You can pass parameters from
client-side JavaScript code to create dynamic queries to enhance the user experience and enabling
you to reuse your lookup templates and code. Further, the format of your own lookup definitions is
almost identical to the format used by the CRM server, making it easy to use them as a starting point.

A fully functional evaluation download and additional information is available at
http://www.stunnware.com/crm2/?area=customlookup.
Product Highlights

e The dialog looks exactly like the standard CRM lookup. No additional training is required to
use it.

e Easy to install: a typical installation does not require more than 30 minutes.
e [Easyto use: create your own lookups in minutes.

e Fully customizable to support any language.

e Use existing CRM lookup files as templates for your own lookup definitions.
e Customized forms will continue to work even if you uninstall the add-on.

e Use the quick-create form for any entity (v1.1)

e Use standard CRM forms to create new entities from the lookup dialog, including field
mapping from the original entity (v1.1)

o Display fields from related entities (e.g. display the phone of the parent account in a contact
lookup) (v1.1)

e Modify the column headings (e.g. change “Address 1: City” to “City”) (v1.1)
e Format date and number columns (v1.2)

e Fully integrates into the form assistant (v1.2)

e Supports the Outlook Offline Client (v1.3)

e Returns additional data from the selected item and related records (v1.3)

e Allows to retrieve multiple records without displaying the lookup dialog (v1.3)

Setup instructions

Before installing the product, please check http://www.stunnware.com/crm2/?area=CustomLookup for
latest news and updates.

The following is the list of actions you need to do in order to install the add-on. | have highlighted the
unsupported modifications, just in case you need to remove them. All files mentioned are included in
the download. Please try it in a test environment first to get familiar with the setup.

If you're installing the application at the CRM server, use the files in the Server directory. If you're
installing at a client machine (Outlook laptop or workgroup client), use the files in the Client directory.

1. Server only: Run the setup.exe program in a command shell. It produces a messages.xml file
with several localized settings. Setup.exe connects to your CRM server using the http protocol
and your default credentials. If your server is configured to only allow https, you need to
enable the http protocol. After the messages.xml file is generated, you can switch back to
https only. The general syntax is "SETUP.EXE <Name of CRM server>". If your server is
running on a port different from 80, you need to specify the port number as well: "SETUP.EXE
<Name of CRM server>:5555". The download also contains two files you can use:
messages_de.xml and messages_en.xml, containing the German and English versions.

2. Copy the CustomLookup folder into the root of your CRM web. The folder must be named
CustomLookup and it must be in the root of the web. Otherwise, the add-on will not work.

3. Copy the messages.xml file created in the first step into the CustomLookup folder. If you have
created a new messages.xml file at the server, use it at the client as well.

4. Replace the following files in the CRM web. If this is the first time you install the
CustomLookup Dialog, save the original files in case you want to restore the original state.

a. _controls/lookup/lookup.js
b. _grid/grid.htc
c. _controls/RelatedInformation/Relatedinformation.htc
d. _controls/RelatedInformation/Category.htc
Copy customLookup.dll into the bin folder of the CRM web (unsupported).
6. Client only:

a. Copy Microsoft.Crm.Platform.ComProxy.dll to the client installation directory, which
usually is C:\Program Files\Microsoft CRM\Client. You can put the file anywhere you
like, just add it to a well-known place in case you want to remove it later.
Microsoft.Crm.Platform.ComProxy.dll is contained in GAC folder of your first CRM
installation CD.

b. Add Microsoft.Crm.Platform.ComProxy.dll to the GAC (Global Assembly Cache). To
do so, open the Microsoft .NET Framework 1.1 Configuration from the Administrative
Tools folder. Right-click on “Assembly Cache” and select “Add”. Select the file you
copied before.

Changes to the original files can be found by looking for the following comments:
/] Cust om Lookup Dial og Start
if (isCustonlLookup && (lookupltenms != null)) {
other nodified code here
}
/1 Cust om Lookup Di al og End

After you have replaced the files, you need to clear the Internet Explorer browser cache of the client
computers. It is usually sufficient to hit Ctrl-F5 in a CRM form containing at least one lookup field.

Note

Previous versions of this document listed all changes made to the server files in detail. This
information is no longer included, as it's safer to simply replace the server files with the files found in

the download. If you have made additional changes to one of the modified files, you need to merge
those changes manually.

Upgrade Instructions

Upgrading an evaluation installation

If you purchased the full version of the Custom Lookup Dialog and want to upgrade your server
running an evaluation copy, all you need to do is to replace the CustomLookup.dll assembly in the bin
folder of the CRM web. If your evaluation copy is an older version than the one you purchased, follow
the setup instructions as described above.

Updating to a newer version

Please follow the setup instructions as described above to update your installation to the current
version.

Testing the custom lookup dialog

Open the main application form of the account in the web designer, select form properties and open
the OnLoad event. If the event is not checked, do it now. Insert the following script (which is identical
to the sample at the top):
if (crnmFormQbjectld !'= null) {

var | ookup = crnmFormall.primarycontactid

| ookup. AddPar an(" cust omLookupd ass", "Account Contacts");
| ookup. AddPar an{ " cust om par ent custoneri d", crnfForm Objectld);

}

The AccountContacts.xml file is contained in the /customLookup/lookup folder. There are two versions:
AccountContacts_DE.xml, which is a German version and AccountContacts EN.xml, which is the
English version. The lookup uses the AccountContacts.xml file, which by default should contain the
English version. If you want to try the German version instead, simply overwrite AccountContacts.xml
with the content of AccountContacts_ DE.xml.

Publish your changes.

Open an account that definitely has some associated contacts and press the primary contact lookup
button. Instead of a list of all contacts, you should now see the custom lookup containing only the
associated contacts. Don't mind if it takes some time before you see the custom lookup dialog. This is
just because the add-on initializes, which is the same behavior you know from CRM itself. It will be
much faster when called again.

Defining your own lookup definition files

You can define any number of lookup definition files in the /CustomLookup/lookup folder. Take the
AccountContact.xml as a template and carefully read the FetchXml documentation in the CRM SDK.
You may also look into the c:\program files\microsoft crm\servern\application files folder, where CRM
stores the definition of its own lookup dialogs. For a quick sample, open the contact.xml file in this
folder. It has the following content:

<l ookup nane="Cont act" >
<obj ect s>
<obj ect type="2">
<col ums>
<col um dat a="ful | name" type="normal "/>
<col um dat a="accountid" attribute="nane" type="nornal" size="150"/>
<col um dat a="addressl_city" type="nornal" size="100"/>
</ col utms>
<dat asour ce>
<filter type="and">
<condition attribute="statecode" operator="eq" val ue="0"/>
<filter type="or">

<condition attribute="full name" operator="1ike" val ue="!searchval ue" />
<condition attribute="firstnane" operator="1ike" val ue="!searchval ue" />
<condition attribute="|astnane" operator="Iike" val ue="!searchval ue" />
<condition attribute="mni ddl enane" operator="Iike" val ue="!searchval ue" />
<condition attribute="ennil address1" operator="1ike" val ue="!searchval ue" />
</filter>
</filter>
</ dat asour ce>
</ obj ect >
</ obj ect s>

</ | ookup>

The file format is very close to the one used in the custom lookup dialog solution. One difference is
that the CRM files use the object type code (2 in this file), while the custom lookup uses the entity
schema name ("contact"). The datasource section is identical, meaning that you can simply copy the
definition if you find a useful query. The columns section is mostly identical. The only difference is that
the custom lookup dialog requires you to specify the column width for all columns, whereas the CRM
definition seems to not require it for at least the first column.

To use your own lookup definitions, you need to save them as an xml file in the /customLookup/lookup
folder. The filename (excluding the .xml extension) is the name you specify in the customLookupClass
parameter.

Uninstalling the add-on

Uninstalling is very easy. Simply copy the original files back to the CRM web. That's all. You don't
need to make any changes to your CRM forms, as the default lookup dialogs will be used after you
make this change. You should however cleanup the CRM web by removing the CustomLookup
directory.

Support
Please refer to http://www.stunnware.com/crm2/?area=customlookup for more information.

What’s new in version 1.1.0?

The following is a list of bug fixes, new features and modifications in the current release.

Bug Fixes

The “New” button in the custom lookup dialog always displayed the quick create form of a contact.
This is now fixed.

New Features

There are some new cool features that are not available in the standard CRM lookup dialog. Even if
you don’t want to filter the displayed records, you can benefit from using the Custom Lookup Dialog
using one or more of them.

Specifying column headers
The following example changes the header of the address1_city column from the default “Address1:
City” to “City”.
<?xm version="1.0" encodi ng="utf-8" ?>
<l ookup nane="Account Cont acts" >
<obj ect type="contact">
<col ums>

<col um dat a="ful | nane" type="nornal " size="200"/>

<col um dat a="parent custoneri d" attribute="nane" type="nornal" size="150" />

<col um dat a="addressl_city" type="nornmal" header="City" size="100" />

</ col ums>

Show information from related objects

The following lookup definition file adds a link-entity section to the datasource to pull data from a
related account in the parentcustomerid field. If it is available, the name and emailaddress1 fields are
also returned. Note the alias attribute in the link-entity node. It is used in the column declaration to
specify that a column should display the values from a related entity rather than the containing entity.

<?xm version="1.0" encodi ng="utf-8" ?>
<l ookup nane="Li nkTest">
<obj ect type="contact">
<col ums>
<col um data="ful | name" type="normal" size="150"/>
<col um dat a="enmi | address1" type="nornal" size="150"/>
<col um dat a="account . nane" header =" Account Nane" type="nornal" size="100"/>
<col um dat a="account . enni | address1" header="Account Enmil" type="nornal" size="100"/>
</ col ums>
<dat asour ce>
<filter type="and">
<condition attribute="statecode" operator="ne" value="1" />

<filter type="or">

<condition attribute="full name" operator="1ike" val ue="!searchval ue" />

<condition attribute="firstname" operator="1ike" val ue="!searchval ue" />

<condition attribute="|astnane" operator="1like" val ue="!searchval ue" />

<condition attribute="m ddl enane" operator="Iike" val ue="!searchval ue" />

<condition attribute="emnil address1" operator="1ike" val ue="!searchval ue" />
</filter>

</filter>

<link-entity nane="account" fron¥"accountid" to="parentcustonerid" alias="account">
<attribute nane="nane"/>
<attribute name="enunil addressl1"/>
</link-entity>

</ dat asour ce>

Note: You cannot sort on columns displaying fields of related entities!

Use Quick Create and Full Create for all entity types

The standard lookup dialog does not allow the creation of all entity types, but the Custom Lookup
Dialog lets you choose from five different modes:

1. Use the quick-create form (working for all entities, including custom entities). This is the
default behavior.

2. Use the standard CRM form to create new entities, taking into account all of the existing field
mappings. This also works for all entity types, including custom entities

3. Disable the “New” button
4. Hide the “New” button
5. Specify the behavior at runtime through your client-side JavaScript

To modify the behavior of the “New” button, add the following to your lookup definition file:
<?xm version="1.0" encodi ng="utf-8" ?>
<l ookup nane="M/Cont act Vi ew' >

<obj ect type="contact">

<col ums>

</ col ums>

<dat asour ce>

</ dat asour ce>

<nessages>

</ messages>

<but t ons>

</ but t ons>
<options>
<create style="dynam c" paraneter="stunnwar e_showCr eat eButton" />
</ opti ons>
</ obj ect >
</l ookup>
The valid values for the style attribute are
e “quick” - use a quick create form
o “full” - use the standard CRM form
e ‘“disabled” — disable the “New” button
e “hidden” — hide the “New” button
e “dynamic” — specify the behavior at runtime.

If you choose the “dynamic” option, you need to specify an additional attribute named “parameter”, like
in the above example. It defines the name of a parameter passed from your client-side JavaScript
code. The code to specify this parameter is identical to pass any other parameter:

crnForm al | . your _LookupFi el d. AddPar an(" st unnwar e_showCr eat eButt on", "di sabl ed");

The parameter value (here: “disabled”) must be set to quick, full, disabled or hidden. If you specify any
other value, the “New” button will be disabled.

Modifications

The evaluation version will stop to work after 20 queries. The initial version allowed 100 queries before
it required restarting the IS service.

What’s new in version 1.2.0?

The following is a list of new features in the current release.
New Features

Integration into the form assistant!

Version 1.2 now integrates into the form assistant. If you have defined a custom lookup class in your
code, the form assistant will display the filtered records as specified in your custom lookup file. You
don’t need to make changes to your existing CRM code. The only requirements are the modifications
to the RelatedInformation.htc file as described in the setup instructions.

The form assistant displays 10 records by default. If more than 10 records exist, a scroll bar is added.
You can override this setting when using the Custom Lookup Dialog with the following option:
<l ookup>

<object ...>

<options>
<maxRowsBef or eScr ol | >20</ maxRowsBef or eScr ol | >
</ opti ons>
</ obj ect >
</l ookup>
The above setting tells the form assistant to display 20 lines before adding a scroll bar. If you set the

value too high, not all records may fit on the screen or you may not see the field description at the
bottom.

Specifying the column format
Date and number columns can now be formatted, using the following notation:
<?xm version="1.0" encodi ng="utf-8" ?>
<l ookup nane="Account Cont acts" >
<obj ect type="contact">
<col ums>
<col um data="ful | name" type="normal" size="200"/>
<col um dat a="cr eat edon" size="150" dt="date” format="dd. M yyyy” />
<col um data="new_i nteger" size="150" dt="int” format="#,#" />

</ col ums>

The data type is specified in the dt attribute. The following values can be specified:

date: a date/time value

int: an integer value

float: a float value

decimal: a decimal or money value

The format can use any valid .NET format specification. Please consult the MSDN library for valid
formats:

Date/Time: http://msdn2.microsoft.com/en-us/library/k494fzbf.aspx

Integer: http://msdn2.microsoft.com/en-us/library/8wch342y.aspx

Float: http://msdn2.microsoft.com/en-us/library/kfsatbh94.aspx

Decimal: http://msdn2.microsoft.com/en-us/library/fzeeb5cd.aspx

Distinct results

Previous versions did not specify the distinct operator in the query. If you were using linked entities so
far, it is possible that items were displayed multiple times. The lookup now includes the distinct flag by
default, unless you explicitly set it with a new option:

<options>
<di stinct>fal se</distinct>

</ opti ons>

Note: the default value has changed from true to false in version 1.3.0.

What’s new in version 1.3.07?

The following is a list of new features in the current release.
Changes

Distinct results

The default setting for the distinct option was changed from true to false. This was done to match the
default setting in FetchXml, which is false as well. If you are using linked entities, it is possible that
items are displayed multiple times. In that case add the following option to your lookup definition file:

<options>
<di stinct>true</distinct>

</ opti ons>
New Features

Outlook offline support!

Version 1.3 can now be used in the Outlook Offline Client. The setup is identical to the server setup.
However the Custom Lookup Dialog uses the Fetch service to read data and to make the Fetch
service running at the client, you need to perform the following additional steps at the client machine:

1. Copy Microsoft.Crm.Platform.ComProxy.dll to the client installation directory, which usually is
C:\Program Files\Microsoft CRM\Client. You can put the file anywhere you like, just add it to a
well-known place in case you want to remove it later. Microsoft.Crm.Platform.ComProxy.dll is
contained in the GAC folder of your first CRM installation CD.

2. Add Microsoft.Crm.Platform.ComProxy.dll to the GAC (Global Assembly Cache). To do so,
open the Microsoft .NET Framework 1.1 Configuration from the Administrative Tools folder.
Right-click on “Assembly Cache” and select “Add”. Select the file you copied before.

Note that version 1.3 does not synchronize the content of the CustomLookup folder. It is planned as
an update in the future. Also note that you don’t need to install the Custom Lookup Dialog when using
the Outlook Desktop Client. The Outlook Desktop Client always uses the CRM server to display data
and you won't even find a local CRM web.

Optional Log files

As it's sometimes hard to understand why the Custom Lookup does not work as expected, you can
now add log files. Log files are specified per lookup definition file, so you can trace a single lookup
without affecting the others.

The following option creates a log file for the lookup definition file it is contained in:
<options>
<l og mode="All" pat h="C:\Logs\ Account Contacts.txt" />

</ opti ons>
The mode attribute can be set to the following values:

e All: Errors and informational content is written to the log file

e Errors: Only errors are written to the log file

e None: Logging is disabled

The path attribute contains the full path to the log file. The directory will be created if not available.
Please make sure that the directory permissions are set correctly, otherwise the custom lookup dialog
may not have the appropriate rights to write the log file.

Returning additional data to use in client-side scripting

Often you want to access more information than just the name and id of the selected lookup item.
Version 1.3 allows you to specify additional columns to be returned and makes them accessible in
client-side code. The current download contains a new sample file (ContactNameSearch), which is
shown here:

<?xm version="1.0" encodi ng="utf-8" ?>
<l ookup nane="Cont act NaneSear ch" >
<obj ect type="contact">
<col ums>
<col um dat a="ful I name" type="normal " size="200" return="true" />

<col umm dat a="parent custoneri d" alias="parentcustoneridnane"
attribute="name" type="normal" size="100" return="true" />

<col um dat a="addressl_city" header="City" type="normal" size="100"
return="true" />

<col umm dat a="parentcustoneri d" type="hi dden" size="150" return="true"
/>

<col um dat a="account. addressl_city" header="Account City" type="hi dden"
size="200" return="true" alias="accountCty" />

<columm data="firstname" type="hidden" return="true" />
<col umm dat a="| ast nane" type="hidden" return="true" />

<col um dat a="t el ephonel” type="hidden" return="true" />

</ col ums>
There are several new options when specifying a column:

e All columns with the “return” attribute set to true are returned to the client and can be
accessed trough client-side script.

e The “alias” attribute overwrites the attribute name.

e Finally type="hidden” hides the column in the lookup dialog, allowing you to return additional
values without having to display them.

Additional data is returned in the data property of the lookup item:
e lookupField.DataValue[0].id contains the unique identifier of the selected record
e lookupField.DataValue[0].name contains the display name of the selected record
e lookupField.DataValue[0].data contains an XML document holding the additional data

A typical result from the query defined in the ContactNameSearch sample is the following:
<resul tset>
<result

ful | nane="Hohne, M chael "

par ent cust oner i dnane="st unnwar e"

addressl_city="G asbrunn"

par ent cust oner i d="{ C9A87C58- 9683- 4644- 80BC- 90D8462CE326} "

account G ty="G asbrunn"

firstname="M chael "

| ast nane="Héhne"

t el ephonel="" />
</resul tset>
Note that the parentcustomerid field is returned twice: parentcustomerid holds the unique identifier and
parentcustomeridname the display name of the parent customer record. The alias attribute is needed

to return multiple properties of the same attribute. Also note that the account.address1_city column
uses the “accountCity” alias.

To access the data in your client-side script code, use the following script template in the OnChange
event of the lookup field:

if (crmFormall.contactid.DatavValue !'= null) {
//Create a new XM. parser and | oad the received content into it.

var doc = new ActiveXObject("M crosoft. XM.DOM') ;

doc. | oadXM.(crnForm al | . cont acti d. Dat aVal ue. dat a) ;

// Each record is contained in a result node.

var resultNode = doc. sel ect Si ngl eNode("/resultset/result");

var firstname = resul t Node.get Attribute("firstnane")
var |astnanme = resul t Node. get Attribute("Il astnane")

var fullname = resul t Node. getAttribute("full name")

}

The RetrieveMultiple service: Retrieving data without displaying the lookup window

Version 1.3 also allows you to use your lookup definition files to return data without displaying the
lookup dialog first. Using the same lookup definition file as before (ContactNameSearch), a typical
guery looks like the following:

// Create a new HTTP request.
var request = new ActiveXObject("M crosoft.XM.HTTP");

//Build the parameter Iist.

var args = "custonlLookupd ass=Cont act NaneSear ch&anme=" +
encodeURl Conmponent (crnfForm al | . st unnwar _nane. Dat aVal ue) + "&recsper page=10";

//Call RetrieveMultiple to get a list of matching records.

request. open(" GET", "/customnmLookup/retrieveMultiple.aspx?" + args, fal se);

//Setting the If-Mdified-Since header to a value in the past ensures that the request is
/Il al ways executed. If you want to use the |IE cache, sinply renove this line.

request . set Request Header ("1 f - Modi fi ed-Si nce", "Sat, 1 Jan 2000 00: 00: 00 GMVI");

/1 Send the request.

request. send(null);

//Retrieve the result set

var responseXnl = request.responseText;

//Create a new XM parser and | oad the received content into it.
var doc = new ActiveXObject ("M crosoft. XM.DOV') ;
doc. | oadXM_(responseXm) ;

/1 Each record is contained in a result node.

var resul tNodes = doc. sel ect Nodes("/resultset/result");

//We build a list of the returned nanes.

var nanes = ""

//Loop through the result set
for(i = 0; i < resultNodes.length; i++) {
var resultNode = resul t Nodes[i];
var firstname = resul t Node. getAttribute("firstnane")

var |astname = resul t Node. get Attribute("l ast nane")

var ful

I name = resul t Node. get Attribute("fullnane")

nanes += lastname +", " + firstnane + " (" + fullname + ")\r\n";

al ert (nanes) ;

You can easily test this code in your own form. Add it to an OnChange event of a text field and replace
“stunnwar_name" in crmForm.all.stunnwar_name.DataValue with the name of your text field.

The XML document returned by the RetrieveMultiple service has the exact same structure as the data
property of a LookupControlltem. However it can contain more than one record. A typical result from

the RetrieveMultiple service is the following:

<resul tset >

<resul t

<resul t

</resul tset>

Of course you can retrieve the same results by calling the CRM service directly. However the
RetrieveMultiple service of the Custom Lookup Dialog decreases the complexity and also ensures that

ful | name="Hdhne, M chael "

par ent cust oner i dnane="st unnwar e"

addressl_city="G asbrunn"

par ent cust oneri d="{ C9OA87C58- 9683- 4644- 80BC- 90D8462CE326} "
account G ty="G asbrunn”

firstname="M chael "

| ast nane="Héhne"

t el ephonel="" />

ful | name="Hdhne, N cole"

par ent cust oner i dnane="st unnwar e"

addressl_city="G asbrunn"

par ent cust orer i d="{ C9A87C58- 9683- 4644- 80BC- 90D8462CE326} "
account G ty="G asbrunn”

firstname="Ni col e"

| ast nane="Héhne"

t el ephonel="" />

you it works in offline mode.

Known issues

If you install or upgrade the Custom Lookup Dialog and you get unexpected results on a client
machine, press CTRL-F5 in any entity containing a lookup field. This forces Internet Explorer to reload

the page and all included JavaScript and HTC files.

Information about Update Rollup 1 for Microsoft CRM 3.0

The updates installed in Update Rollup 1, which was released on December 1%, does not overwrite the
files modified by the Custom Lookup Dialog, so it should continue to run without problems after you

have applied the rollup.

